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ANALYSIS OF LAMINATED, COMPOSITE, CIRCULAR CYLINDRICAL

SHELLS WITH GENERAL BOUNDARY CONDITIONS

By .S. Srinivas*

Langley Research Center

SUMMARY

This report develops (1) a refined approximate theory for the static and dynamic

analyses of finite, laminated, composite, circular cylindrical shells with general boundary

conditions; (2) an exact three-dimensional analysis of simply supported, laminated, com-

posite, circular cylindrical shells; and (3) a thin-shell theory for laminated, composite,

circular cylindrical shells.

In the refined approximate theory the displacements are assumed to be piecewise

linear across the thickness and the effects of transverse shear deformations and trans-

verse normal stress are included. A variational approach is followed to obtain the

governing differential equations and boundary conditions. A general solution of the govern-

ing differential equations is also presented. The analysis of finite laminated shells with

general boundary conditions involves satisfying the boundary conditions by making use

of the appropriate part of the general solution. By using the refined approximate theory,

the edge boundary conditions can be properly satisfied.

In the exact three-dimensional analysis of simply supported, laminated shells, each

ply is treated as a homogeneous cylinder. The displacements are chosen to vary trigo-

nometrically in the axial and circumferential directions. The three governing partial

differential equations are reduced to three coupled ordinary differential equations with

the radial coordinate as the independent variable. The three coupled ordinary differential

equations are then solved by use of the Frobenius method to obtain the variation of displace-

ments in the radial direction. By satisfying the interface and exterior surface conditions, a

set of simultaneous algebraic equations is obtained. For free vibration, the determinant of

the coefficient matrix is equated to zero, and the solution of this characteristic equation

yields the frequencies. The analysis and results are applicable to wave propagation in

infinite shells, since the simple boundary conditions simulate the axial nodes in infinite

shells.

*NRC-NASA Resident Research Associate.



The thin-shell theories for laminated, composite, circular cylindrical shells that
are available in the literature contain some approximations in addition to the basic
assumptions of thin-shell theory. The present thin-shell theory contains no additional
assumptions.

The results obtained from the refined approximate theory and thin-shell theory
are compared with the exact results for simply supported, laminated, composite circular
cylindrical shells. The refined approximate theory is found to be very accurate even
for thick shells with short nodal distances. In contrast, the thin-shell theory is found
to be reasonably accurate only for thin shells with moderate nodal distances. Frequency
calculations using the refined approximate theory and thin-shell theory took considerably
less computer time than those using the exact three-dimensional theory.

INTRODUCTION

Structural application of laminated composites in which each ply is made up of
different materials is ever on the increase. As a consequence, analysis of such structures
is gaining importance. The present paper deals with the static and dynamic analyses of
laminated, circular cylindrical shells made up of composite materials.

Analysis of laminated circular cylindrical shells has drawn considerable attention
in recent times. If any of the plies is fiber reinforced or honeycomb, the normal proce-
dure is to treat the ply as an equivalent homogeneous material having orthotropic or
anisotropic properties. Dong (ref. 1), Bert, Baker, and Egle (ref. 2), and Stavsky and
Loewy (ref. 3) have given differential equations for the dynamics of laminated cylindrical
shells and solutions for free vibrations when the shell is simply supported. In these ref-
erences the differential equations are based on different variations of thin-shell theory.
The basic assumptions of thin-shell theory are (1) radial displacements are constant
across the thickness, (2) axial and circumferential displacements vary linearly across
the thickness and, (3) transverse shear deformations and transverse normal stress can
be neglected. In references 1 to 3 some additional approximations are made.

Nelson, Dong, and Kalra (ref. 4) have analyzed the special problem of free vibrations
of simply supported circular cylinders by following the Ritz technique. Using the theory
of three-dimensional elasticity, Armenhkas (ref. 5) has analyzed the problem of wave
propagation in two-layered circular cylindrical shells of infinite length and made of iso-
tropic materials. For isotropic materials, the governing differential equations of elasticity
can be easily solved in terms of displacement potentials; the variation of displacements
in the radial direction, when determined, is in the form of Bessel functions. However, a
similar approach is not possible if the material is orthotropic.



For laminated composite shells with general boundary conditions, the literature does
not appear to offer any analysis which takes into account general variations of the displace-
ments across the thickness. Such an analysis would automatically take into account the
effects of transverse shear deformations and transverse normal stress. An analysis of

this type is needed for the following reasons:

(1) The edge boundary conditions can be properly satisfied only if the variation of
displacements across the thickness is unrestricted. The stresses and displace-
ments close to the boundaries obtained from the thin-shell theory are highly
inac cur ate.

(2) For thick shells, especially composite shells, the thicknesswise variation of
displacements is more general than the restricted distribution assumed in the
thin-shell theory. Therefore, a general variation of displacements is necessary
for a better estimation of frequencies of free vibrations, stresses, and displace-

ments even in regions far from the edges.

An exact three-dimensional elastic analysis of laminated shells is computationally

impractical except in the case of simply supported shells, the case that is derived herein.
Therefore, an approximate theory, which takes into account general variations of displace-
ments across the thickness, is developed for the static and dynamic analyses of laminated,
composite, circular cylindrical shells with general boundary conditions. The approximate
theory developed in this report is referred to as the "refined approximate theory." In the
refined approximate theory the displacements are assumed to be piecewise linear across
the thickness, and the three-dimensional problem is reduced to a two-dimensional problem
in the circumferential and radial coordinates. Furthermore, a thin-shell theory is devel-

oped without making any approximations in addition to the basic assumptions inherent in
thin-shell theory.

The accuracies of the refined approximate theory and the thin-shell theory are
assessed by comparing results obtained by using them with the exact results for simply

supported shells.

SYMBOLS

Ar, AO, Az

a

arbitrary constants used in particular part of refined approximate

analysis

outer radius of shell, a*(p + 1)

a*(i) inner radius of ith ply



a(i) - a*(i)
a

Bl1(I,1), BI2(I,I), •

b

b

Cll • . C66

c22 . c66

Dp, D 11 (1,1), D12 (1,1), .

d r , d 0, d z

Fpr , FO0, F0z , .

fpr, f_o, fOz, • •

G(i,k)

H(j,k)

h*(i)

h(i)--
a

m,n

stiffnesses of shell used in thin-shell analysis

length of cylinder

nodal distance or half-wavelength, b/n

stiffness elastic constants

modified elastic constants for thin-shell analysis

stiffnesses of shell used in refined approximate analysis

coefficients in power series for displacements in exact three-

dimensional analysis

integrals of stresses in refined approximate analysis

integrals of stresses in thin-shell analysis

arbitrary constants in expressions for displacements and

stresses in exact three-dimensional analysis

coefficient in power series expansion of displacements used in

exact three- dimensional analysis

thickness of ith ply

indices

matrices occurring in particular part of refined approximate

analysis

integers occurring in trigonometric expansions of displace-

ments and stresses in circumferential and axial directions,

respectively



7TaN = n_a or ----
b b

0 null matrix

P number of p.lies

Pm
number of layers into which middle ply of a three-ply laminate

is split in refined approximate analysis

Q00, Q0z, • • • integrals of applied stresses on edges

qrr(1), qro (1)
qrz(1) '}

applied tractions on inner surface of shell in

directions, respectively

r, 0, and z

qrr (2)' qr0 (2),l

qrz (2) J
applied tractions on outer surface of shell in r, 0, and

z directions, respectively

qor' qo0' qoz applied stresses on edges

directions, respectively

0= Constant in r, 0, and z

qzr' qzo' qzz
applied stresses on edges z = Constant in r, 0, and z

directions, respectively

qrrf(1), qr0f(1), qrzf(1), • Fourier coefficients of applied pressures

R= r
a

r radial coordinate

T kinetic energy

time

Ur(i) difference between radial displacements at inner and outer

surfaces of ith ply used in refined approximate analysis

u0(i) difference between circumferential displacements at inner and

outer surfaces of ith ply used in refined approximate analysis



Uz(i) difference between axial displacements at inner and outer

surfaces of ith ply used in refined approximate analysis

Ur0, UO0, Uz0 radial, circumferential, and axial displacements of inner

surface in thin- shell analysis

u r, u 0 , u z radial, circumferential, and axial displacements, respectively

V(1,k,i), V(2,k,i), . . . coefficients of differential operators in governing differential

equations of refined approximate analysis

W s strain energy

W
e

work done by applied loading

(We) surfaces work done by applied tractions on inner and outer surfaces

of shell

(We) edges

a

work done by applied stresses on edges

z axial coordinate

_(k)

£z(P) 1

/

/

_0 (_), _z(fi) /

_ e(_), _z(_)J

indicial constants in Frobenius method of solution of differential

equations used in exact three-dimensional analysis

matrices occurring in system of ordinary differential equations

in complementary part of refined approximate analysis

6



5(j, i) Kronecker delta

6rr, £6)6),6zz,_

6rz, 6r6b £Oz J

(j,k)= i for k¢ j

_?r(i'fi)'_z(i'/3) _?0(i'_)' 1

and

strains

_(j,k)= fR_j_(J 1 for k=j

functions of Z occurring in complementary part of refined

approximate analysis

.0 circumferential angular coordinate

_z(i,_)_r(i'fi)'_ 0(i,/3) t

p(i)

nondimensional frequency parameter, equation (98)

functions of 0 occurring in complementary part of refined

approximate analysis

mass density of ith layer

ffrr,frO0,ffzz,_

ffrz,(frO,CrOzJ

stresses

coefficients occurring in summation for coefficients V(_,k,i)

_br, G0, _z

Xr(i,k), × 0(i,k),

Xz(i,k), ×rr(i,k),

Xoo(i,k), Xzz(i,k),

Xrz(i,k), Xr6}(i,k),

× Oz(i,k)

functions of radial coordinate occurring in double trigonometric

expansion of displacements used in exact three-dimensional

analysis

functions which are power series in radial coordinate occurring

in double trigonometric expansion of displacements and

stresses used in exact three-dimensional analysis

frequency of vibration

7



A tilde (~) under a symbol denotes a matrix. Primes denote differentiated quan-

tities. Numbers in parentheses are indices.

STRESS-STRAIN RELATIONSHIP

Most of the materials commonly encountered in structural practice are either iso-

tropic or orthotropic. But in some cases during analysis there arises a need to choose a

coordinate system which is different from the axes of orthotropy. In such cases the

stress-strain relationships exhibit anisotropy. As shown in reference 6, the anisotropic

stress-strain relationship that might be encountered in the analysis of fiber-reinforced

components is of the type

_00

(TZZ

_rz

Crr0

(_ 0z

I

-Cll C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66

_00

!ezz

6rz

(1)

If the material is orthotropic, the elastic constants C16, C26, C36 , and C45 are zero.

STRAIN- DISPLACEMENT RE LATIONS

The strain-displacement relations in polar coordinates are (from ref. 7)

8ur auz 8ur
err= a-?- erz= a-?-+ %-Z

1 aUo Ur 1 OUr OUo Uo
eO0 = _ a---O"+ _'- er0 = _ a---_ + or r

au z au 0 1 aUz
ezz = az e0z = a-'K- + F a-"-K

(2)



REFINED APPROXIMATE THEORY

Development of Theory

An approximate theory for the statics and dynamics of laminated, anisotropic,

circular cylindrical shells (figs. 1 and 2) is developed. The displacements are assumed

to be piecewise linear across the thickness; that is, the displacements of the jth ply

Ur(J) = a

u0 ) = a

Uz ) = a

are given by

J

_-_ Ur(k ) _(j,k)

k=0

J

k=0

U0(k ) _(j,k)

J

Uz(k ) _(j,k)

k=0

(3)

where j = 1, 2, ., p and

_(j,k) =
I for k_j

Rh_(J) for
k=j

In equations (3), Ur(k) , Up(k), and Uz(k) are functions of _ and z and are independent

of r; Ur(0) , Up(0), and Uz(0) are the displacements of the inner surface; Ur(k), u0(k),

and Uz(k) are the differences between the displacements of the inner and outer surfaces

of the kth ply at agiven 0 and z.

A variational approach is used to obtain the governing differential equations and

boundary conditions. The variation in strain energy Ws, the kinetic energy T, and

the work done by the applied forces W e due to virtual displacements are calculated

and substituted into the variational condition (known as Hamilton's principle)
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Figure 1.- Multi-ply cylindrical shell panel.
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Figure 2.- Multi-ply cylindrical shell.



=0 (4)

where t o

is given by

and t 1 are the initial and final times, respectively. The strain energy W s

a 3

W s =_-

P

j=l

fa(j+l) [_rr(j) err(J) + _0 (j) e0e(J) + CYzz(J) ezz(J); fz
+ _rz(J) erz(J) + Crro(J) ere(J) + Croz(J) eOz(J)JR dR dO dZ (5)

From equations (2) and (3) the strains can be expressed as

err(J ) - Ur(J)

h(j)

eee(J) =

J

FaU0(k)

k=O
+ Ur(k) 1 _(j,k)

eZZ(j) =

J

Z OUz(k)OZ _(j,k)
k=O

J
Uz(j) _-_ aUr(k )

erz(J)- h(j) + Z__ak=OOZ _(j,k)

J

ere(J) - h(j) + _ k=O
U o(k_ _(j,k)

J

k_0_ °Uo(k) aUz(k) 1eoz(J)= = I_ oz +_ _ _(j,k)

(6)

11



Substituting for the strains from equations (6) and integrating with respect to R give

3
Ws = m

2

P

j=l

J

k=0
*_Frr(J , 3, 1) Ur(J) 6(j, k) + Fr0(J, 3, 1) U0(J) 5(j, k)

+ Frz(j, 3 , 1) Uz(j) 5(j, k) + F00 (j,1, 61) f US(k)0 0 + Ur(k

°Uz(k) fOUr(k) Uo(k_+Fzz(J'2'51) 0Z _ Fr0(J'l'51) 00 -

0Ur(k) 0U0(k)
+ Frz (j'2, 51) 0_ + F0z(J' 2' 51) 0Z

where

+ Fsz (j, 1, 61)

61 = 1 + 5(j,k).

{F_ (j, 1, f );

OUz(k)"_.

_-5 -j. do dZ

The integrals F are integrals of stresses defined as

Fz(j, 2, FZ0,3, )}

(7)

a(j+l) fo R(I2(J)_-_ IR- a(J)___-1 dR
(8)

where

fi= rr, OO, . ., 8z

Stresses can be written in terms of displacements by use of equations (1) and (6).

By substituting for stresses in equation (8) and integrating, the integrals F can be

expressed in terms of displacements. (See table I.)

Taking the variation of the strain energy Ws, integrating by parts, and then changing

the order of summation yield

12
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The kinetic energy T is given by

W m

P a(j+l)

" Z; zL
2 j=l (j)

P(J) I[ 12 2 2}. .L-_] R
dR dO dZ (10)

Taking the variation gives

5T = a 3

P

faill 1) F 0ur(j) aSUr(J)P(J) Y _ Ot

+
au0(J) 05u0(J) aUz(j) aSUz(j) ]

at at + at at J RdR dO dZ

After integration by parts,

t 1
5T dt= -a 3 t I P a(j+l) Fa 2Ur(J)

ft 0 Z _fz fa(j)j=i '(J)L __
5Ur(J)

02u0(J) a2Uz(J) )16uo(j) + 6Uz( j R dR dO dZ
at 2 at 2

(11)

Substituting equations (3) into equation (11) and integrating with respect to R give

tl elft 5T dt=-a5 [ _-_, f0fz Fpr(J,2,61
0 t o k=0 =k

5Ur(k)

d+ Fpo(j,2,51 5U0 (k) +
j=k

dO dZ (12)

(See table I for Fpr , Fpo , and Fpz.)

14



The total work done by applied loads We is the sum of the work done by applied
tractions on the inner and outer surfaces of the shell (We)surfaces and the work done

by applied stresses at the edges (We)edges, that is,

We = (We)surfaces + (We)edges
(13)

Now if the shell As subjected to dynamic tractions qrr(1), qr0(1), and- qrz(1) and

qrr(2), qr0(2), and qrz(2) on the inner (R = a(1)) and outer surfaces (R = 1) of the shell

in the r, 0, and z directions, respectively, then the virtual work done by these applied

tractions is

6(We)surfaces=a3f_ fz Z qrfi(1) a(l)5U/3(0)+qrfi(2)Z_ 5Ufi(k dO
/3=r,0,z k=0

dZ

P

=a3 L fz Z_ _ [qr/3(2)_qr/3(1)5(k,O)a(1)] 5Ufi(k)dO dZ (14)
/3=r,0,z k=O

If the edge z = Constant is subjected to stresses qzr, qzo' and qzz and the edge

0 = Constant is subjected to stresses q0r' qo0' and q0z in the r, O, and z direc-

tions, respectively, the virtual work done by these stresses is

6(We)edges = 3 f_ _=r,O,z (j) k=0

RdR d0

+ a 3 6Ufi(k) _ (j
fzj_=l_ fa qo_ =r,e,z (j) =0

dR dZ

15



Integrating with respect to R and rearranging yield

8(We)edges = a3 f_ Z
fi =r ,e ,z

P

k=0

P

Z
j=k

5%(k) Qzfl _' 51 ) d0.

where

+a
fl=r,0,z

P

k=0

P

5% (k) Qofl (j,51) dZ

j=k

Qzfl(J'51) = qzflR L _) _J dR

(15)

(16a)

a(j+l)

I-=  I-IQ°fl (j' 51) = qO_ h(
(J)

dR (16b)

Equations (9), (12), (13), (14), and (15) are substituted into variational condition (4). Since

the virtual displacements are arbitrary, the coefficients of BUr(k) , 5Us(k) , and 5Uz(k)

(k = 0, 1, 2, . .., p) can be equated to zero to yield the governing differential equations

(3p + 3 in number) and boundary conditions (3p + 3 on a boundary).

The governing differential equations are

P

I- a2Fpr (j
j=k

,2, 51) - 5(j,k) Frr(J , 3, 1)

- F_0(J'I'51) +_ Fr0 (J '1' 51) + _Z rrz (j'2'51)]

+ qrr(2) - qrr(1) 5(k, 0) a(1) = 0 (17)

16



P

j=k

,2, 61) - 5(j,k) Fr0(j, 3, 1) + Fr0(J, 1, 51 )

+ a-_Fe0(J'I'_I) + _Z F0z(J"2'_I)I

+ qr0(2) - qr0(1) 5(k, 0) a(1) = 0

(18)

P

j=k

+ 51)I

(j, 1, 51)
,2,51) - 6(j,k) Frz(J,3, 1) + 8-_ F0z

+ qrz(2) - qrz(1) 5(k, 0) a(1) = 0
(19)

for k=0, 1,2,. .., p.

The boundary conditions are as follows:

For 0 = Constant,

p P

X Fr0(J' 1'51)- _

j =k j =k

Qor(J, 51 ) = 0 or 5Ur(k) = 0
(20a)

p P

Foo(J,l,51). - L

j =k j =k

Qoo(J, 51)
=0 or 5u0(k) =0

(20b)

P

L F0z(j ,1,51 ) -

j=k

P

_ Qoz(J

j=k

,51) = o or 5Uz(k) = 0
(20c)

17



For z = Constant,

P

j=k

Frz(j ,2,81) -

P

?,
j=k

Qzr(J,51 ) =0 or BUr(k) =0 (21a)

P

Z
j=k

F0z(j ,2, 51) "

P

T,
j=k

Qz0(j, 51) = 0 or 8U0(k ) = 0 (21b)

P

?,
j=k

Fzz(j ,2, 51) -

P

T,
j=k

Qzz(j,51 ) =0 or 8Uz(k ) =0 (21c)

where k=0, 1, 2,..., p.

for both 0 = Constant and

the boundary conditions for

It is noted that for cylindrical panels, the boundary conditions

z = Constant are satisfied, whereas for cylinders, only

z = Constant are satisfied.

By substituting for the integrals F in terms of displacements, the governing differ-

ential equations (17) to (19) can be written as

P

_-_1- 02 02 + V(3, k, i)

_[- V(1,k,i) -_ + V(2,k,i) __ aZ202i=O

+ V(4, k, i)
a2

ao az + V(5, k, i)l Ur(i )

+ IV(6, k,i) _-_ + V(7, k,i) a 1_-g ve(i)

+
= qrr(1) 8(k, 0) a(1) - qrr(2) (22)

18



L a V(11,k, i) Ur(i)(lO,k, i) -_ +

i=O

a2 + V(13,k,i) a2
+ V(1,k,_) a-_2 + V(12,k,i) _02

at 2

a 2
+ V(14,k, i) + V (15, k, i)1 U O(i)

IV a2 + V(18,k,i) a2
+ (16,k,i) 02 +V(17'k'i) _

aO 2

V(19,k,i)_ Uz(i# = qro(1) 5(k,O) a(1) - qro (2)
+

J J

(23)

L (20,k,i) _0 + V(21,k,i)_Z Ur(i)

i=O

+

+

IV(16,k, i) a_2a02

a2
+ V(25, k, i)-_

a2

+VOT,k,i) _

a2

+ V(23,k,i) a-_

+ V(26, k, i) 1 Uz(i) _

a2
+ V(18,k,i)

a2

+ V(24, k, i) _-_

= qrz(1) 5(k,O)

+V(22,k,i) 1 Ue(i)

a(1) - qrz(2) (24)

19



In equations (22) to (24) the V coefficients are pure functions of material properties and
the inner and outer radii of the plies. (See table II.) They can also take into account var-

iation of material properties within a ply.

Procedure for Analysis

The analysis of a cylinder or a cylindrical panel involves finding a solution of the
governing differential equations (22) to (24) which satisfies the appropriate boundary con-
ditions (eqs. (20) and (21)). The complete solution of the governing equations can be split
into two parts: (1) a particular solution which takes care of the applied loading on the
inner and outer surfaces and (2) a complementary solution which has arbitrary constants
necessary for satisfying the edge boundary conditions. The procedure for obtaining the
particular and complementary solutions is explained herein.

Particular solution.- In some cases, depending on the applied loading on the inner

and outer surfaces of the cylinder, the particular solution can be obtained by inspection

of the governing differential equations. However, the general procedure is as follows:

The applied loadings (amplitudes of loading in the case for forced vibrations) are

expanded in a double Fourier series of the type

c_ oo

qrr (_) = _ _ Iqrrf (_'1) cos masin nJ-_z
m=0 n=O b

+ qrrf(_ , 2) cos m0cos n_____zz+ qrrf(/3, 3) sin mO sin n_z
b b

+ qrrf(/3,4) sin m0 cos __n_zlb
(25a)

oO oO

m=0 n=0

sin mO sin nTrz
b

+ qr0f(fi , 2) sin m0 cos n____zz+ qr0f(fi, 3) cos m0 sin n_z
b b

+qr0f(_, 4) cos m0 cos nbZ- 1
(25b)
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qrz(_ )

oo oo nTiZ

L L _ qrzf(/_ 1) cosm0COS_= ' b

m=O n=0

nTrz

b
+ qrzf(_ ,2) cos m0 sin n_z + qrzf(_ , 3) sin m0 cosb

+ qrzf(_ , 4) sin m0 sin nv__z-b

(25c)

where 13= 1, 2. The Fourier load coefficients qrrf, qr0f, and qrzf are functions of

m and n. Depending on the loading, some of them might be zero.

The displacements Ur(i), U0(i), and Uz(i) are also chosen in double Fourier series

as

oo oO

= b

m=0 n=0

+ Ar(i , 2) cos m0 cos n_z + Ar(i , 3) sin m0 sin n_____zb
b

+ Ar(i , 4) sin m0 cos nbz-

(26a)

cO oO

= b

m=0 n=0

+ A0(i , 2) sin m0 cos _ + A0(i, 3) cos m0 sin nv____zb
b

+ A0(i ,4) cos m0 cos nbz _

(26b)
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oO oO

m=O n=O

cos m0 cos n_z
b

+ Az(i, 2 ) cos ma sin nuz + Az(i ,3) sin m0 cos nu__z
b b

+ Az(i , 4) sin m0 sin _-1 (26c)

where Ar, A0, and A z are arbitrary constants. Equations (25) and (26) are substituted

into the governing differential equations (22) to (24), and the various terms are grouped

appropriately. Now, if the coefficients of cos m0 sin n____zz, cos m0 cos n______z,
b b

sin m0 sin n_z and sin m0 cos n_z are equated to zero in each of the equations, a
b b

set of 4(3p + 3) simultaneous linear algebraic equations is obtained for each m and n

combination. The equations can be written in the matrix form

where

mm

M(1) _1 01 J(4)

Q1 M(2) J(3) 01

01 J(2) M(3) 01

J(1) 01 01 M(4)

A(fi) = {Ar(0,fi), Ar(1,_), •

5(1) K(i) l

5(2) K(2) I

5(3) _K(3) I

• , Ar(P, fi);

(27)

A 0(0,_), A 0(1,fi), . .., A 0(p,_);

Az(0 , fi), Az(1 , fi), . .., Az(p, f3)}
(28)

{ [qrrf(1,/3) a(1) - qrrf(2,fi) ],

[qr0f(1, fl) a(1) - qr0f(2, fi)],

Iqrzf(1 , f3) a(1) - qrzf(2, f3)],

- qrrf(2, fl), . .., - qrrf(2, f3);

- qr0f(2, f3), . . . , - qr0f(2,'fl);

qrzf(2, f3), . . . , - qrzf(2,fl),_ (29)
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01 is a null square matrix of order 3p + 3, and M and J are square matrices of
order 3p + 3. (See table III.)

If all the plies are orthotropic, the J matrix becomes null, and correspondingly,
equation (27) degenerates into four lower order equations,

= (30)

where _= 1, 2, 3, and 4.

Solution of the simultaneous algebraic equations (27) or (30) yields the values of

A for each m and n combination. Summation of disp!acements and stresses with

respect to m and n to desired accuracy completes the particular solution.

Complementary solution.- For obtaining the complete complementary solution,

the displacements Ur(i) , U0(i), and Uz(i) are assumed to be in the form

Ur(i) = _ I_r(i'l) sinnJ--_z + _r(i'2) c°s_-]b
n=0

oO

ET?r(i, 1) sin m0

m=O

+ _?r(i, 2) cos m0]

ue(i) =

oO

n=0
sin n____z+b _0(i'2)c°s _-%1

oO

m=0

I770 (i, 1) COS m0 + 770(i , 2) sin m0]

Uz(i) =

cO

n=0
_z (i, 1) cos n____%zb + _z(i,2) sin_l

oO

_??Z(i,l) sinmO

m=O
+ _z(i, 2) cos mO]

(31)
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The _ are functions of 0 whereas the _/ are functions of Z. Equations (31) are
substituted into the differential equations (22) to (24), now with a zero right-hand side,

and the various terms are properly grouped. If the coefficients of sin n_z, cos n_z
b b

sin m0, and cos m0 are equated to zero in each of the equations, two sets of homogeneous
simultaneous ordinary differential equations (6p + 6 in number) are obtained. One set
has 0 as the independent variable and } as the dependent variable. The second set
has Z as the independent variable and _ as the dependent variable. The equations can
be written in the following form:

and

(1)

z(1)

_(1) I

(2)_

=0

d 2

dZ 2

d
dZ

(1)

z(1)

=0

(32)

(33)
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where

_(_) = {_r(O,/3), _r(1,fi),..., _r(P,_);

_o(O,Z), }o(1,P), ...., _o(p,Z);

_z (o,_), }z(1,P), • • • , _z(P, _)}
(34)

and

{_?r(0 ' ¢), _r(1 ' fi), . . . , _?r(p,/3);

_0(0,_), Vo(1,_) ,, ..., _o(p,Z);

_z(O,Z), Vz0,P), • • •, Vz (p,_)}
(35)

The matrices 'I/0, II O, F0, TO, _0, E0, "IJz' Ilz' Fz' 2"z' /I_z, and _z are square

matrices of order 3p + 3. (See table IV.) If alI the plies are orthotropic, the matrices

_II0, TO, _0, _IIz, _z, and _z become null, and each of the equations (32) and (33)

reduces to two equations of order 3p + 3, that is,

d2 (36)
_0(_) _-_ _(_)+ r0(_) _ _(_)+ _0(_) _(_)--o

d2 (37)

_z(_)_-__(_)+rz(_)_ _J_)+ _z(_)_(_):o

where /3 = 1, 2. Solution of the homogeneous simultaneous ordinary differential equa-

tions (32) and (33) or (36) andi(37) yields expressions for _ and T/.

One of the procedures of solving homogeneous simultaneous ordinary differential

equations in closed form is given in appendix A. The solution of the differential equa-

tions (32) and (33) can, in general, be written in the form

{_r(i,/_); _o(i,/_); _z(i,/_)}

12p+12

=Z
_=I

{Xr(i ,/3, lZ); Xo(i,/3, 1_); Xz(i,/3, lZ)} X(/_) e g(lz)O
(38)

25



and

{Ur(i, f3); _(i,_); _z(i, fi)}

12p+12

=Z
IZ=I

{Yr(i,_,_); Y0(i,/3,_); Yz(i, fi,_)} Y(_) eS(_) z (39)

where X and Y are arbitrary constants. The functions Xr,X0,X z and Yr,YE),Yz could

be either constants or functions of a and z, respectively, depending on the multiplicity

of roots g(_) and s(_), respectively. Equations (38) and (39) with equations (31) form

the complementary solution.

Further remarks on analysis.- In the previous sections the procedure for obtain-

ing the particular and complementary parts of the solution to the governing differential

equations was described for a general case. In many cases, depending on the loading,

material properties, and boundary conditions, it might be sufficient to consider only a

part of the general solution. After the appropriate part of the general solution is

chosen, the boundary conditions are satisfied either exactly or approximately, as the

case may be, to obtain the values of the arbitrary constants of the complementary part.

Convergence studies can be carried out with respect to the number of terms chosen in

the complementary part.

Use of Refined Analysis with Simply Supported Cylinders

In order to assess its accuracy, the present approximate theory is applied to the

analysis of simply supported, laminated orthotropic cylinders (fig. 2), and the results are

compared with those obtained with the exact three-dimensional analysis.

The boundary conditions for a simply supported, laminated circular cylinder are

on z = 0 and b

azz(i) = Ur(i) = u0(i) = 0 (40)

The boundary conditions (40) are identically satisfied by the first and third sets in

the particular solution (eqs. (26)). If the loading on the cylinder is such that it can be

expanded in the form of the first set in equations (25), then it is sufficient to consider only

the first set in equations (26). Because the particular solution itself satisfies the support

boundary conditions, the complementary part is unnecessary. Since the material is

orthotropic, from equation (30)

M(1) A(1) = K(1) (41)
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For static (_2= 0) or forced-vibration (_ is known) problems, equation (41) is

solved to obtainthe values of A. The series for stresses and displacements is summed

to the desired accuracy.

In free-vibration problems the right-hand side of equation (41) is zero; hence,

The matrix

M(1) A(1) = 0

M(1) can be written as the sum of two matrices,

M(1) = A 1 + _A2_22

A1 and

(42)

A2122, that is,

(43)

• Substituting equation (43) into equation (42) gives

A 1 A(1) + _22_A2 A(1) = 0

Methods for numerical solution of characteristic matrix equations such as equation (44)

are well known. Solution of equation (44) yields 3p + 3 frequencies for each m and

combination.

EXACT THREE-DIMENSIONAL ANALYSIS OF

SIMPLY SUPPORTED SHELLS

(44)

n

As mentioned previously, simply supported, orthotropic, laminated circular cylindri-

cal shells (fig. 2) happen to be one of the very few cases for which exact three-dimensional

analysis is possible. This is because the boundary conditions of a simply supported

shell can be automatically satisfied by choosing the displacements and stresses in a

double trigonometric series in 0 and z coordinates. In the three-dimensionai analysis,

each ply of the laminated shell is treated as a homogeneous shell. The conditions of con-

tinuity and equilibrium at the interfaces are satisfied in addition to exterior surface

conditions.

Governing Differential Equations

Consider a homogeneous orthotropic shell. The three-dimensional equations of

equilibrium in a cylindrical polar coordinate system are (from ref. 7)

1 a a (700 =0
_1 ! (r(_rr) + _ -_ (_r0 + -_ (_rz - --_ + PC_2Ur
r ar

(45a)
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1 a (r2 rO) +_i __a _0 _2u0
2 ar r 00 '700 + az _Oz +p = 0 (45b)

r

1 0 (rarz) + 1 0 0---- Cr0z + -- Crzz+p_22u z =0 (45c)
r Or r 00 az

By use of stress-strain and strain-displacement relationships (1) and (2), the governing

differential equations of three-dimensional elasticity in terms of displacements become

C 82 1 8 1 82 1 82 \11 8r 2 + Cll r _rr + C55 r2 802 C22 --2r + p_2 + C44 _az 2 ) Ur

+
I( 1 82 1 8 lu eC12 +C55) r Or oO (C55 + C22) 2 oO

r

+
I(C44 + C13) 82 1 8 1+ (C13 - C23) u = 0

0r az r 8z z
(46)

, ,  .lUrC12 + C55) r 0r O0 + (C55 + C22) 2
r

C 82 1 82 1 _2 82+ C55-- _ +P +C66_+ 55 8r 2 C22 2 802 8z 2
r r

I( 1 82 I UZ=0+ C23 +C66) r 80 8z
(47)

I( 82C13 + C44)-
or 8z

_ __ u r + C23+ (C44 + C23) r oz

qo21
+ C66) |

r 80 8Z J
u o

IC 82
+ C44- __

+ 44 8r2

1 8 1 o2
+ C66 + p_2 + C33

r or r 2 002

(48)
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Solution of Differential Equations

The displacements Ur, u0, and u z are chosen to be in the form

Ur=a Z Z _r(r)c°smesinn_----_z
m=O n=O b

up= a _ _ _bo(r)sinmO sin n_z
m=O n=O b

UZ m'_ a Z _ q_)z(r)cos mO c °s n_-_

m=0 n=0 b

(49)

where _r, _b0, and q5z are pure functions of r. By substituting equations (49) in

equations (46) to (48) and simplifying, a set of three homogeneous coupled ordinary differ-

ential equations in which the independent variable is r is obtained; the equations are

IC d2 1 d 1 (C
11 + Cll 55 m2

dR 2 R dR R 2
+ C22) + (p_22a 2 _ C44N2_r

÷

(C55 + C12) mR d _edR (C55 + C22) m

+ I (C13 +C44) N d (C13 C23) R1.... _z = 0
dR

(50)
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_(C55 + C12) m dR dR
- (C55 + C22) (_r

IC + _ 1 ___lq_ 0+ 55-_R2d2 _ (C22m 2 +C55)-_1R2 (p_2a2 C66N2) +C55--R

E+ (C23 + C66 ) _bz = 0 (51)

I(C44+C13) N d +(C44+C23) N1 I _1d--R R- _br+ (C66 + C23) G0

IC d2 1 d m 2 N2C33) 1
+ 44 + C44 -- -- - C66- + (P_22a2 - qSz = 0 (52)

dR 2 R dR R 2

The Frobenius method is now used to solve equations (50) to (52). The functions qSr,

q)0, and _z are chosen in the form of a power series, that is,

{_br; q)9; q)z} = _, R0e+j

j=O

{Hr(J); Ho(j); Hz(J) } (53)

and are substituted into equations (50) to (52). This substitution results in

oO

: {Ic11  c55m2+c22,1
j=0

Hr(J) R j+_-2 + (p_22a 2 - C44 N2) Hr(J)R j+_

+ I(C55 + C12) m(j + o_) - (C55 + C22) m I R j+_-2 H0(j)

+ I-(C13 + C44)N(j +oz) -(C13- C23) N ] R j+°_-I Hz(j) } =0 (54)
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55 + C12) m(j +_) - (C55 + C22) m] Rj+_-2 Hr(J)

+ [C55 (j + _)2_ (C22m2 + C55)] Rj+_-2 H0(j)

. (p_2a2 - C66N 2) R j+_ H0(j)

+ [(c23+ C66) mN ] RJ+ -IHz(j)) =0 (55)

oo

+C13 )N(j +_) + (C44 +C23 )N] R j+_-I Hr(J)

+ [(C66 +C23).mN 1 R j+_-I H0(j)

+ [C44(J +_)2- C66m 2] Rj+_-2Hz(j )

+ (p_22a 2 - N 2 C33) R j+_ Hz(j) } = 0 (56)

If the coefficients of R _-2

(Cll _2 - C55 m2 - C22)

-(c55 + Cl2)m_- (C55 +C22)m ]

are equated to zero in equations (54) to (56),

[(C55 +C12)m_-(C55 +C22)m ] 0

(C55 _2 - C22 m2 - C55) 0

(C44_2 -C66 m2)

Hr(0)

He(O)

i

iHz (0)

=0

(57)
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For a nontrivial solution, the determinant of the coefficient matrix in equation (57) must
be zero; as a result, the indicial equation

(.4_ 2v1_2 + Vo) (c442 _ c66m2) =0 (58)

is obtained where

v0=

C22(m 2 - 1) 2

Cll

and

Vl=

C55(C22 + Cll) + m 2 (Cll C22 - 2C12 C55 - C22 )

2Cll C55

Solution of equation (58) yields six roots for

+ v -v0

_(2) = -_(1)

a(3) =_Vl- _v2-v0

_(4) = -_(3)

ot(5) = m ¢C66/C44

_(6) = -_(5)

o/:

(59)

Solving equation (57) for the constants Hr(0) , H0(0) , and Hz(0) , one obtains (index k

is added to denote the root) the following:
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For roots, I, 2, 3, and 4,

Hr(0 , k) = G(k)

Cll_(k) 2 C55m2_ _ C22
H0(0, k) - G(k)

m(C55 + C22) - m(C55 + C12)a(k)

Hz(0 ,k) = 0

(60)

and for roots 5 and 6,

Hr(0,k ) = H0(0, k ) -- 0_

JH z (0, k) = G (k)

In equations (60) and (61),

tinuing the process of equating the coefficients of each power of R

R_(k) -1, R_(k), R_(k) +1, etc.) and solving the resulting equations,

Hr(j,k), H0(J,k), and Hz(j,k), for j = 1, 2, . and k = 1, 2, .

expressed in terms of the arbitrary constant G(k)

(61)

G(k) for k = 1, 2, . .., 6 are arbitrary constants. By con-

to zero (that is,

the constants

{Hr(J,k); H0(J,k); Hz(j,k)} = G(k) (dr0,k); d0(j,k); dz(j,k) }

., 6, can be

(62)

where dr, do, and d z are functions of _(k), j, m, N, _2, and material properties.

The functions dr, d0, and dz are obtained through recurrence relations (appendix B).

From equations (53) and (62),

oo

{_br; (_0; _z} = _ G(k) _ R °l(k)+j{dr(J,k); d00,k); dz(j,k)} (63)

k=l j =0

If _(k) happens to be a multiple root or an integer, the form of equation (63) changes

slightly. The complete results are summarized in appendix B.

If equations (49) and (63) are combined, the displacements u r, u0, and u z can

be formally written (index i is added to denote the ith ply of the laminate) as
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_o _o 6

Ur(i) =a Z Z cos mO sin n_z Z ×r(i,k) G(i,k)
m=O n=O b k=l

uo(i) : a

,_ 6

Z Z sinmOsinnTrz Z
m=0 n=0 b k=l

×0(i, k) G(i, k)

Uz(i):a Z Z cos m/ cos n_r___z Z Xz (i'k) G(i'k)

m=0 n=0 b k=l

(64)

Expressions for Xr, X0, and Xz are given in appendix B. By making use of stress-

strain and strain-displacement relations, stresses are obtained in the form

oo _o 6

Crrr(i)= Z Z cos m0sin nTrz Z
m=0 n=0 b k=l

×rr(i, k) G(i, k)

_o 6

cro0(i)= Z Z cos m0 sin n_z Z
m=0 n=0 b k=l

Xo0(i, k) G(i,k)

co co 6

_zz(i)= Z Z cos mOsin nTrz Z
m=0 n=0 b k=l

OO oO

ffrz(i)= Z Z

m=0 n=0

6

cos mO COS --nTrz 2

b _k=l

Xzz(i, k) G(i, k)

Xrz(i, k) G(i, k)

(65)

oO oO

Crr0(i): Z Z

m=O n=O

6

sin m0 sin nTrz _ "

b " 'k=l
Xr0 (i, k) G(i, k)

¢x_ cO

m=O n=O

Expressions for Xrr , XO0 , . .

6

sin mO cos _nTrz _ "

b _k=l
Xoz (i, k) G(i, k)

are given in appendix B.
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Boundary Conditions

The displacements and stresses (eqs. (64) and (65)) satisfy the boundary conditions
(eq. (40)) identically. The conditions that are to be satisfied are

For the inner surface R = a(1),

_rr(1) = qrr(1), _r0(1) = qr0(1), _rz(1) = qrz(1) (66)

For the outer surface R = 1,

Crrr(P) = qrr(2), _rg(P) = qrg(2), _rz(P) = qrz (2)

For the interfaces R = a(_) where _ = 2, 3, . ., p,

_rr(f - 1) - err(f) = _rO(f - 1) - _r0(f) = _rz(f - 1) - Crz(f) = 0

(67)

Ur(f - 1) - Ur(f ) = u0(f - 1) - u0(f ) = Uz(f - 1) - Uz(f) = 0

(68 a)

(68b)

Let the applied loadings be expandable in double Fourier series as in the first set of equa-

tion (25). When conditions (66) to (68) are satisfied, a set of 6p simultaneous algebraic

equations is obtained for each m and n combination. The equations can be written in

the matrix form as

where

PG = 7 (69)

G = {G(1,1), G(1,2),..., G(1,6);

G(2,1), G(2,2), . .., G(2,6);

• • • • • • • • • • • • • • o • • •

G(p, 1), G(p,2),..., G(p,6)}

= {qrrf(1,1), qr0f(1,1), qrzf(1,1); 03;

qrrf(2,1), qrof(2,1), qrzf(2,1)}

is a null column matrix of order 6p - 6) and

(70)

(71)

(o.3
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1 _

m

(a(1),l)

L(a(2),l)

o2

o2

0 2

01

-L(a(2),2)

L(a(3),2)

02

0 2

ol

01

02

-L(a(3),3)

L(a(4),3) -L(a(4),4)

L(a_-l),p-2)

02

ol

o2

o2

- L(a(p-1),p- 1) 0 2

L(a(p),p- 1) -L(a(p),p)

0 1 _ (i,p)

(72)

In equation (72),

=

m

×rr(i, 1), Xrr(i ,2), . .., ×rr(i,6)

Xro(i , 1), Xr_(i ,2), . .., ×ra(i,6)

Xrz(i, 1), Xrz(i, 2), . .., Xrz(t,6)
a._-/2

(73)

L(,,i) Xr(i , 1), Xr(i,2), . .., Xr(i,6)

×o(i, 1), ×0(i,2), . .., ×0(i,6)

Xz(i,1), Xz(i,2), . .., Xz(i,6)
R= I_

(74)

and O1 and 02 are null matrices of order (3 x 6) and (6 x 6).
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In static (_2 = 0) and forced-vibration (_ is known) problems, equation (69) can be

solved to obtain the constants G, and evaluation of equations (64) and (65) to the desired

accuracy yields the displacements and stresses.

In a free-vibration or wave-propagation problem, the right-hand side of equation (69)

is zero. For a nontrivial solution,

det P = 0 (75)

For

-_= 0,

-_ = O,

The solution of this characteristic equation yields the frequencies of free vibration.

For given circumferential and axial wave numbers m and n, there is an infinite

spectrum of natural frequencies, each corresponding to a different thickness or radial

mode.

When either m or n equals zero, the characteristic determinant (of order 6p)

degenerates into a product of two determinants of orders 4p and 2p.

m = 0, the determinant of order 4p corresponds to axisymmetric motion

= 0/, and the determinant of order 2p corresponds to torsional vibrationU 0

]

= u z = 0/. Furthermore, in the axisymmetric motion, if the nodal distanceU r

(b = b/n) is infinite, the radial and axial displacements become uncoupled, and the

determinant of order 4p degenerates into a product of two determinants, each of

order 2p. One corresponds to radial motion and the other to axial motion.

For n = 0, the determinant of order 4p

_z = 0, u z = 0), and the determinant of order

theaxialdirection (-_-z =0 , Ur=U 0 =0).

corresponds to plane strain motion

2p corresponds to thickness shear in

Procedure for Numerical Evaluation

Static and forced-vibration problems.- If the geometric and material properties and

the loading are known, the steps to evaluate stresses and displacements are as follows:

(1) Express the loading in double Fourier series and obtain the Fourier load

coefficients.

(2) Compute the necessary × functions for radial coordinates R = a(1), . .., a(p), 1.

(3) Solve equation (69) to obtain the constants G(i,k), for k = 1, 2, . .., 6 and

i= 1, 2, . . ., p.

(4) Evaluate equations (64) and (65) to desired accuracy by summing the series with

respect to m and n to obtain the displacements and stresses at points of

interest.

37



Free vibration.- If m, n, and the geometric and material properties are known,
the steps to obtain the frequencies of vibration _ are as follows:

(1) Assume a starting value for the frequency.
(2) Compute the necessary × functions for R = a(1), . .., a(p), 1.

(3) Calculate the determinant I PI.

(4) Adjust the frequency by a suitable amount and repeat steps (2) and (3) until the

sign of the determinant for two successive values of frequency is different.

(5) Linearly interpolate the frequency for which the determinant is zero, and by using

this as the initial value and employing the well-known regula falsi technique,

refine the approximate frequency to the desired accuracy.

Some remarks on computation.- In all the problems - static, forced vibration, or

free vibration - it is necessary to evaluate the × functions at the required radii, not

only for solving equation (69), but also for calculating stresses and displacements at the

required locations. In free vibrations the × functions will have to be evaluated for each

trial frequency. The × functions, which are power series in the radial coordinate R,

are slowly convergent. For the numerical results presented in this paper, the number of

terms summed for good accuracy ranged between 80 and 140 depending on thickness,

thinner cylinders requiring more terms. The numerical evaluation was time consuming.

In free-vibration problems, in order to save computer time, frequencies were evaluated

first by using the refined approximate theory, and these frequencies were then used as the

starting values for solving the characteristic equation (eq. (75)). In contrast to the exact

three-dimensional analysis, frequency calculations using the refined approximate theory

and thin-shell theory took very little time.

THIN-SHELL THEORY

In this section the Fltlgge type analysis for homogeneous isotropic shells (ref. 8) is

extended to anisotropic laminated circular cylindrical shells. The displacement distribu-

tion consistent with the basic assumptions of thin-shell theory is

u r = aUr0

u0 = a a g00 - j (76)

{U _Ur0_u z : a z0- JR-a(1)] _j
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where Ur0 , U00 , and

The strains are

Uz0 are the displacements at the inner surface of the shell'

e00 -
1 0U00

a0) 0o

OUzo

ezz = aZ_

VR- a(1) 1 a2Ur0 Ur0
L:R-_(]3J oo2 +-_

£0Z =

- [R- a0)]
a2UrO

aZ 2

R OUo0 1 aUz0 F R _a(1)] a2Ur0

a(1) + - L

(77)

The modified relationships between stresses _00, _zz, and Cr0z and strains

e00 , ezz , and e0z for the jth ply are obtained as follows: Equation (1) is solved for

strains err , e00 , ezz , and e0z ,

Coo

EZZ

m

Cll

C12

C13

C16
J

Ell

El2

El3

El6

C12 C13

C22 C23

C23 C33

C26 C36

El2

E22

E23

E26

El3

E23

E33

E36

m

C16

C26

C36

C66_]j

E16

E26

E36

E66 j

-1 -- --

_rr
I

_00

fiZZ

_0z
J

rr-

_00

k _O'ZZ

OZ_

(78)
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Now, solving for stresses (r00, _zz, and _0z in terms of

ing use of the last three equations of equation (78) yield

c00, EZZ _ and e0z and mak-

(_ZZ

Cr0z

E22 E23

E23 E33

E26 E36

E36

E66
J

B

e00

CZ Z

n

c22 c23 c26

c23 c33 c36

c26 c36 c66

m

-- _00-
I

i 6ZZ

I e0z
_J __ _

(79)

A procedure identical to that for the refined approximate theory is now followed to

derive the governing differential equations and boundary conditions. The strain energy

W s is given by

P

j=l

fa a(j+l)

(j) I_00(J)
600(J) + fizz(J) 6zz(J)

4 Cr0z(j ) e0z(j)l R dR d0 dZ (80)

Substituting for the strains from equations (77) yields

40"

-a3 f0 fz _ aUo0 O2Ur0Ws 2 00(1) a---_ - f00(2) + f00(3) vr0002

fzz(1 ) aUzO fzz(2) a2Uro 8Uo0+ + fOz(1)
az az 2 az

qa2Ur08Uz0
- | d0 dZ

+ f°z(2) o---d- f°z(3) ao az J (81)



The stress integrals f can be written in terms of displacements. (See table V.) Taking
the virtual variation of strain energy and then integrating by parts give

5Ws = a3 fO ;z f _00(3) "a2f00(2) 02fzz(2) o2f0z(3)_002 OZ 2 - 00 oZ _jSUr0

+ I aoz(1) ace(l) l UeooZ oO

-%

5U z dO dZ
az O0

a3 fz Ifsf0_ 2) °f0z(3)q aUr0+ + _ JSUr0 -f00(2) 5 a_

+ fO0(1) 5Uo0 + foz(2) 5UzO t dZ

_Of0z(3 ) Ofzz (2)_

+ a3 fO L[- -_ + " -_Z jSUrO- fzz(2) 5

OUr0

aZ

+ f0z(1) 5U00 + fzz(1) 5Uz@ , d0

-a3 _fOz(3) 5UrO]at corners
(82)
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The virtual variation of kinetic energy, including the rotary inertia terms, is

5T dt = a 5 - pr(1) + + .]

0 0

6Uro

+ fp0(1) .SU00 + fpz(1) 5Uz0 t dO dZ

+ fzfpr(2) 5Ur0 dZ+f0, fpr(3)5Ur0d0/ dt
(83)

where fpr, fpO, and fpz are given in table V. The virtual work due to applied tractions

on the inner and outer surfaces is

6(We)surfaces=a3 f0 fz (_qrr(2)-a(1)qrr(1)+l-a(1)a(1) 8qr0(2)80

8qrz(2)_
+ El- a(1)_ _-_ .j, 5Ur0

+ I qrO(2----)-a(1) a(1)qro(1) 1 5Uo0

+ [qrz(2)- a(1) qrz(1)l 5UzO / dO dZ

- a3 f, I1- aO)_t(_ ] qro(2) 5UrO dZ

- a3 fo [1 - a(1)] qrz(2) 5Ur0 dO (84)
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The virtual work due to applied stresses on the edges is

V(o 0"r0
5(We )edges = 3 f0 :L\-zr + -_ / 5Ur0-Qzz 6 a_

+ Qz0 6U00 + Qzz 6Uz01
dO

° r0 0J
fz 6Ur0 - Q00 6 -- + Q00 5U00 + Q0z 5Uz+ a3 Or + 0z / 00

dZ

- a3 [(Qz0 + Q0z) 5Ur0]at corners
(85)

where

(Qzr; Qz0; Qzz; Qz0; Qzz; Q0r; Q0z; Q00; Q0z; Q00)

P a(j+l)

j=l (j)

R 2

R; qz0 a_; qzzR; qz0
R [1_- a(1)]; qzz [R- a(1)] R; q0r;

a(1)

R - a(1) [

a [r - a(1)]; f dRqoz;qoo_-5i; qoz %0 _:(i5
(86)

Equations (82) to (85) and (13) are substituted into equation (4), and the various terms are

properly grouped. Since the virtual displacements are arbitrary, their coefficients are

equated to zero to obtain three differential equations and four boundary conditions. The

three differential equations are (after substituting for the integrals f in terms of

displacement)

43



f-Bp(9,1) 0A + Bp(7,3) _4 + Bp(9,3) 04Ot2 Ot2O02 at28Z 2

+ 2B22(2,2) 8.-2-2 _ [2B23(5,3) + B66(12,3)] _020Z2
a02

- B22(3 , 1)

a2
+ 2B23(6, 2) -- -

aZ 2
B33(9,3) a4_ - 2B26(18,3) 04

aZ 4 ao38z

_2 2B36(16, 3) _4 3t+ 2B26(13,2) a0 oZ _00"Z Ur0

(i0,2)
a3

ot2o0
+ B22(4, 2) o3

o0---_ - B22(5 , 1) !o0

a3

03 + [B26(7,2 ) +B26(17,2)] O02OZ+ [B66(14'2) + B23(8'2)] a0 0Z 2

- B26 (8'1) _Z +B36 (15'2) a3 }az---- Ueo

_- _ 03+ Bp(9,2) 83 + IB66(13,2)+ B23(5,2)_ 0028------_
0t20Z

B23(6, 1) a + B33(9,2) a3 03_ _ __ + B26(2,2) --
_Z 0Z 3 a03

- B26(3 , 1) ! + IB36(6,2)a0 + B36(16, 2) 1 Uz0

= a(1) qrr(1) - qrr(2) - I
1 - a(1)_ °qr0 (2) - [I- Oqrz(2)

_Z
(87
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Bp(10,2)0----L-3 - _B66(14,2)ot2oe

-B22(4,2)o__3 +B22(5,1)_ -
0o3

+B26(8,1)__ B36(15,2) o_L
az 3

+ B23(8, 2)] °3
00 oZ 2

Ur0

+ B26(17,2)] 03
o02oZ

+ {-Bp(ll,1) 0t20-2-2
+ B22(7, 1) 02 + B66(111)

002
0_2_2 + 2B26(10,1)
OZ 2

U00

+ {_B66 (8,

o 2
1) + B23(8, 1)_ 00 0Z

O2 O2

__ + B26(5, 1) + B36 (15, 1)oo--_ oz--_) Uz°

qr0(2)

= a(1) qr0(1) a(1)
(88)

Bp(9, 2) 030t20 Z
_ _B23(5,2)

o 3
+ B66(13,2)] -

o02oZ
+ B23(6, 1) oZ

- B33(9,2) 03 _ B36(16,2) 9-3----3 _
oZ---_ o0 oZ 2

B26(2,2) o3 o+ B26(3, 1) --
o03 o0

2) 03 ,_- B36(6, Ur0
oZ200 J

o2
3(8,1) + B66(8, 1)] o0 oZ

+B36(15,1) 02 +B26(5,1) 0--22 _
0Z---2 002 9

U00

Bp (9, 1) 02
02

+ B33 (9, 1) -_

02

+ B66(3, 1) 0-_ + 2B36(6, 1)ia0a_2_z}Uz0

= a(1) qrz(1) - qrz (2)
(89)
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The quantities B22 ,

as follows:

For 0 = Constant,

B23, • are defined in table V. The boundary conditions are

Far00(2) af0z(3)
L-w +

1 - a(1)_
fpr(2) + qro(2) a(_ J

I

aQ0z
= Q0r + 0z or 5Ur0 =0

(90a)

(°Ur0_
f00(2) = Q00 or _t,-7b--) = 0 (90b)

f00 (1) = Q00 or 5U00 = 0 (90c)

f0z (2) = Q0z or 5Uz0 =0 (90d)

For z = Constant,

I Of00_%%(3) _fzz (2)- -- t- 0Z fP r(3) + qrz(2) [1 - a(1)]} = Qzr + or 5Ur0 =000

(91a)

- (aVr0_
fzz(2) = Qzz or 5\_) =0

(91b)

fOz (1) =Qzo or 5Uo0 =0 (91c)

fzz (1) =Qzz or 5Uz0 =0 (91d)

and at corners,

foz(3)='Qzo +Qoz or 5UrO=O (92)

It is noted here that the thin-shell theory has only three differential equations in con-

trast to the 3p + 3 equations of the refined approximate theory. Also, the number of

boundary conditions that can be specified at any location on the boundary is 4 in thin-shell

theory compared with 3p + 3 in the refined approximate theory.
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Procedure for Analysis

The analysis of a circular cylindrical shell now involves finding a solution of the
governing differential equations (eqs. (87) to (89)) which satisfies the appropriate boundary
conditions (eqs. (90) and (91)). The complete solution of the governing differential equa-
tions can be split into a particular part and a complementary part. The procedures for
obtaining the particular and complementary parts are similar to those for the refined

approximate analysis.

Use of Thin-Shell Theory With Simply Supported Cylinders

In order to assess the accuracy of the thin-shell theory, it is applied to the analysis

of harmonic vibrations of simply supported, laminated orthotropic cylinders (fig. 2), and

the results are compared with those obtained by using an exact three-dimensional analysis.

The displacements Ur0, U00 , and Uz0 are assumed to be of the form

_) ¢<)

Ur0 = _, _ S r COS m0 sin nTTz
b

m=0 n=0

c<) oO

s0sinm0sin
b

m=0 n=0

(93)

 z0= Z
m=0 n=0

Sz cos mO cos nu____z
b

If the applied loading can be expressed in the form of the first set in equation (25), then

by substituting equation (93) along with the first set in equation (25) into equations (87)

to (89), a set of three simultaneous algebraic equations is obtained for each combination

of m and n. These equations can be written in the form

_P1S +_22_P 2 S= (94)

where

S= (Sr; So; Sz_
(95)
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and Pl and _P2

The matrices

Pl =

I/a(1)qrrf(1)-qrrf(2)- II-a(1) 0a(1) ] mqr0f(2) + [1- a(1)] Nqrzf(2 ;

qr0f(2)_; }
a(1)qr0f(l) - a(l) / (a(llqrzf(1) - qrzf(2))

are square matrices of order 3.

_1 and _P2

K1 n2 K3

n 2 K4 K5

K3 n 5 K6

are of the form

(96)

_P2 7.8= g8 gl0

9 0 gll_J

where

gl = -B22 (I' 3) m4 - 2B22 (2, 2) m2 - [2B23(5,3) + B66(12,3)3 m2N2 - B22(3,1)

- 2 B23(6 , 2) N 2 - B33(9 , 3) N 4

g2 =-B22 (4,2) m3 - B22(5,1) m- IB66(14, 2) +B23(8,2)] raN2

K3 = IB66(13, 2) + B23(5,2) 1 m2N + B23(6, 1) N + B33(9,2) N 3

K4 = -B66(11 , 1) N 2 - B22(7 , 1) m 2

g5 = IB66 (8'1) + B23(8'1)] mN
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• L•

K6 = -B33(9, 1) N 2 - B66(3, 1) m 2

K7 = Bp(9, 1) + Bp(7, 3) m 2 + Bp(9, 3) N 2

K8 = Bp(10, 2) m

K9= -Bp(9, 2) N

K10= Bp(ll, 1)

Kll = Bp(9, 1)

See table V for B relations.

In the case of static or forced-vibration problems, equation (94) can be solved to

obtain the constants S r, SO, and Sz. The series for stresses and displacements are

summed to the desired accuracy.

In the case of free vibrations, equation (94) becomes

_1 S + _22P2 S= 0

(97)

This characteristic matrix equation is solved to obtain the frequencies of free vibration.

Since the order of _P1 and _2 matrices is 3, the number of frequencies is also 3 for

a given m and n combination.

NUMERICAL RESULTS AND DISCUSSION

In this section the numerical results for the free vibrations of simply supported,

laminated, orthotropic cylinders are presented for two typical three-ply cylinders.

Results from the present refined approximate theory and the thin-shell theory are compared

with results from the exact three-dimensional analysis. Since the simple-support condi-

tions simulate the conditions at nodes in wave propagation in infinite cylinders, the present

results are applicable to the problem of wave propagation. In wave-propagation problems,

the nodal distance b is equal to one-haK the wavelength, and the wave velocity is equal

to

49



The frequencies are presented in terms of a dimensionless frequency parameter k,
defined as

P

k = _a j=l

P

Z C33(J) [a(j

j=l

_1/2

+ 1) 2 _ a(j) 2]

+ 1)2 _ a(j)21

• (98)

The first three frequencies of free vibration are presented in figure 3 and table VI

for a thin cylinder (total thickness is 5 percent of outer radius) and a thick cylinder (total

thickness is 20 percent of outer radius). The material and geometric properties are

given in table VI. In both cYlinders the middle ply is thicker and also of lower elastic

moduli than the other two plies. In figure 3 the frequency parameter is plotted against

the circumferential wave number m for various ratios of nodal distance to outer radius.

In figures 4 and 5 the displacement distributions across the thickness are plotted for the

thick cylinder.

On attempting to classify the first three radial or thickness modes, it was found that

in most cases not one of the three displacements was clearly dominating. In this respect

the laminated composite cylinders differ from homogeneous isotropic cylinders, where

the three thickness modes can be distinguished reasonably well as modes associated with

either large radial displacements, large axial displacements, or large circumferential

displacements. In the numerical results presented, for m = 0, the first mode was

axisymmetric, the second mode was torsional, and the third mode was axisymmetric.

In contrast, when m = 0 in homogeneous isotropic cylinders, the first mode is generally
torsional.

As in homogeneous isotropic cylinders, as the nodal distance approaches infinity, the

first and second frequencies vanish when m = 0, and only the first frequency vanishes

when m = 1. For m _ 2, all the frequencies approach nonzero finite values as the nodal

distance approaches infinity. The frequencies are not always monotonic functions of circun

ferential wave number m; the nature of variation of frequencies with m depends on nod_

distance and material properties. (See fig. 3 and table VI.)

In axisymmetric modes (fig. 4), even when the cylinder is thick and the nodal distance

is short, the true u r distribution across the thickness is nearly piecewise linear in the

first two modes. Also, the true u z distribution is piecewise linear in the first mode

and becomes nonlinear in the second mode. In the torsional mode the true u 0 distributio_
is nonlinear.
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Figure 3.- Frequency parameter _ as a function of circumferential wave number

for various nodal distances. (See table VI for material properties.)
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Figure 4.- Displacement distribution across thickness in a thick three-ply cylinder.

m = 0; b/a = 1. (First and third modes are axisymmetric_ u 0 = 0. Second mode

is torsional (u r = u z = 0). Displacements have been normalized with respect to their

maximum value s.)

When m ->- 1 (fig. 5), the true displacement distributions across the thickness are

nearly piecewise linear for the first mode even when the cylinder is thick and the nodal

distance is short. But for the second and third modes, especially when the cylinder is

thick, the true displacement distribution across the thickness within each ply is nonlinear.

The thin-shell theory overestimates frequencies (fig. 3 and table VI). Table VII

summarizes the influence of thickness, wave number m, and nodal distance on the

accuracy of frequencies obtained from thin-shell theory. In general, the error in the

second frequency is less than the error in the first and third frequencies. The thickness-

wise displacement distributions predicted by thin-shell theory are highly erroneous

(figs. 4 and 5).

The first frequency obtained from the refined approximate theory is very close to the

exact value, even for thick cylinders, for all values of m, nodal distance, and material

properties (table VI). The second and third frequencies are also reasonably close to the

exact values. For the thick cylinder, the maximum errors in the second and third fre-

quencies obtained from the refined approximate theory are 13 percent and 6 percent,

respectively. In comparison, the corresponding maximum errors in the second and third

frequencies obtained by thin-shell theory are 60 percent and 165 percent. The accuracy
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of the frequencies obtained by the refined approximate theory can be further improved by

splitting the thicker ply into a number of thinner plies. The second and third frequency

values obtained by splitting the middle ply into two plies of equal thickness are given in

table VI(b). The frequencies obtained from the refined approximate theory can be brought

as close to exact values as desired by increasing Pro' the number of plies into which the

middle ply is split (fig. 6). The improvement in the accuracy with increase in Pm is

rapid at first but slows down subsequently. The amount of computation increases slightly

with increase in Pm"

The number of frequencies predicted by the refined approximate theory for a given m

and nodal distance is 3p + 3, where P is the total number of plies including the artificial

splitting of the actual plies. The higher order frequencies (not shown in table VD from the

refined approximate theory correspond to the higher order frequencies of the exact three-

dimensional analysis. The refined approximate theory might identify some modes which

are not identified by thin-shell theory but are important in response and impact problems.

The refined approximate theory yields a piecewise linear representation of the exact

distribution (figs. 4 and 5). Thus, for cases in which the exact displacement distribution

is nearly piecewise linear, the approximate and exact distributions are close. In cases

where the exact distribution is nonlinear within each ply, the representation of the true

distribution by the approximate distribution can be improved by artificially splitting the

thicker plies into thinner plies (figs. 4 and 5). 55
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Figure 6.- Percent error in the frequency parameter as a function

of the number of layers Pm into which middle ply is split.

b/a = 1; thick cylinder: Total thickness, 20 percent of outer

radius; a(1) = 0.8; a(2) = 0.82; a(3) = 0.98. (See table VI

for material properties.)

CONCLUDING RE MARKS

A refined approximate theory for the static and dynamic analysis of finRe laminated

composite shells was developed. The analysis was reduced to a two-dimensional problem

in the axial and circumferential coordinates by assuming piecewise linearity of displace-

ments across the thickness. The governing differential equations and the boundary condi-

tions were derived by using a variational approach. General solutions of the governing

differential equations were developed in trigonometric series form. Analysis of finite

laminated shells with general boundary conditions now involved satisfying the boundary

56



conditions by making use of the appropriate part of the general solution. This theory
allows 3 + (3 × Number of plies) boundary conditions on a boundary in contrast to only
four boundary conditions of thin-shell theory. Thus, the refined approximate theory
allows a proper satisfaction of the boundary conditions and, in turn, the results close to

boundaries should be obtainable to a hig.h degree of accuracy.

An exact three-dimensional analysis of simply supported shells was also developed,

and the results from it for free vibrations were used for assessing the accuracy of the
refined approximate theory and that of thin-shell theory. The thin-shell theory developed
in this report does not contain any approximations beyond the basic assumptions inherent

in thin-shell theory.
The refined approximate theory was found to be accurate even for thick shells with

short nodal distances and high circumferential wave numbers. In contrast, thin-shell
theory was found to be accurate for moderately thin shells (thickness about 5 percent of
the radius) only in a narrow range of nodal distances and circumferential wave numbers.

The accuracy of the results obtained from the refined approximate theory can be

further improved, if needed, by splitting the actual plies into a number of thinner plies.
The accuracy can be studied through improvement of the results as the number of plies
into which the thicker plies are split increases. The refined approximate theory can be

applied to a variety of static and dynamic problems of luminated, composite, circular

cylindrical shells. The theory can be extended to arbitrary shells.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., August 20, 1973.
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APPENDIX A

SOLUTION OF HOMOGENEOUS SIMULTANEOUS

ORDINARY DIFFERENTIAL EQUATIONS

A procedure for solving a system of homogeneous simultaneous ordinary differential

equations of the type of equations (32) and (33) is developed herein. The system of second-

order differential equations is converted to a system of first-order equations, which can

then be solved by following standard techniques. Consider a system of _ equations,

where y

and A,

d 2 d
A_ 4_+B --_ +C_=0

~ dy2 ~ dy

(A1)

is the independent variable, _ is the column matrix of dependent variables,

B, and C are the coefficient square matrices of order _. Now by choosing

q5= d 4___

~ dy

(A2:

equation (A1) can be written in the form

A--d _ +B_b +C4_ = 0
dy .....

(A3

Equation (A3) can be written after some manipulation as

d
-A-1B_ - A-1C ! = _yy

(A4

Combining equations (A2) and (A4) yields

where
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APPENDIX A - Concluded

In equation (A6) I is a unit matrix of order 0/, and 01 is a null square matrix of
order a. Solution of equation (A5) can be assumed to be of the form

Substituting equation (AT) into equation (A5) and simplifying give

(AT)

(AS)

Solution of characteristic matrix equations such as equation (A8) is well known. Since the

order of D is 20/, there will be 20/ values of _. Thus, the solution of equation (A1)

can be finally written in the form

20/

= _ _(_) T(/_) e _(I_)y

/_=1

where _(IZ) is the eigenvector corresponding to root _(IZ), and T(I_) is the arbitrary

constant.

In cases where multiple roots occur, the special solutions corresponding to such

roots can be obtained by following the usual procedure.

(A9)
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APPENDIX B

X FUNCTIONS OF EQUATIONS (64) AND (65)

In this appendix, expressions for the × functions occurring in equations (64) and (65)

are given. The form of the solution given by equation (63) is true if the roots are nonzero,

are nonmultiple, and do not differ by an integer. When any of these conditions are not

satisfied, as in the cases discussed later, the form of solution is different from that of

equation (63), and special procedures must be followed to obtain the solution.

_r,

Ordinary Case

When equations (63) and (64) are compared, it is seen that the displacement functions

×0, and ×z are

The functions

where

{Xr(k); ×o(k); Xz(k)}

×rr(k), ×o0(k), •

×rr(k) =

oo

j=0

oo

_, RO_k) +j- 1

j=O

R °_k)+j (dr(J,k); d0(J,k); dz(j,k)} (B1)

can be written in the form

[_hldr(J, k) + _2d0(J, k) + _h3dz(j,k)] (B2)

Xrr(k)

×00 (k)

×zz (k)

Xrz (k)

×r 0 (k)

×0z(k)

_1 _P2 _3

Cll[_(k) +j] + C12

C12[_(k) +j] + C22

C13[a(k) + j] + C23

C12 m

C22 m

C23 m

-C13NR

-C23NR

-C33NR

C44NR

-C55m

0

0

C55 [a(k) + j - 1]

C66NR

C44 [a(k) + j]

0

-C66 m

and

6O

dr_ do, and d z are given in table VIII.



APPENDIX B - Continued

Special Case: m= 1

When m = 1, roots o_3) and a<4) are zero, and the original solutions, given in

equations (B1) and (B2), corresponding to these two indicial constants become identical.

For the root o_3), the original solution .is retained, but for the indicial constant c_4), a

special solution, which is linearly independent of the solution for o(3), is found. The

special solution is obtained by differentiating the original solutions (eqs. (BI) and (B2))

_, then substituting k = 4 and taking the limit o_4) -- 0. The solution

with respect to given as follows (In the following equation, the index k is retained
thus obtained is
instead of replacing it with 4 since the same equation will be used later with a different

value for k):

With k = 4,

{×r(k); x0(k); Xz(k)}

oO

j=0

R j {_dr(J,k) logeR' + dr(J,k)_;

_do(J,k) logeR +d_(j,k)_; _dz(j,k) l°geR + dz(j'k)]}

(B3)

Functions ×rr(k), ×00 (k)' "
can be written in the form

×rr(k) =

oO

R ]-I _ l{dr (J

j=0

d' ",k)),k) logeR + r(] + _2 {do(J' k) logeR

d' " k)}
+ d_(j,k)) + _3{dz (j,k) l°geR + z(]'

+ _4dr(J, k) + _5d0(j,k) + _6dz 0, k)_

(B4)
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where

APPENDIX B - Continued

Xrr(k)

Xoo(k)

Xzz(k)

Xrz(k)

×ro(k)

XOz(k)

Cll

C12

C13

0

0

0

0

0

C55

0

@6

0

0

C44

0

In equations (B3) and (B4) the primes denote that the value has been differentiated with
' d'

respect to c_ and then the limit has been taken as _ -- 0. The functions dr, 0, and

T

dz are given in table VIII.

Special Case: m = 0

When m = 0, o_3) I, oi(4) -i, and _(5) = o_6) = 0. For m = 0, that is _---=0,= = _0

displacements ur and uz are not coupled with ue; also, the differential equations (50)

and (52) are not coupled with equation (51). The motion that is associated with ur and

uz is axisymmetric, and the associated indicial constants are o_I), o_2), _(5), and o_6).

The motion associated with ua is torsional, and the corresponding indicial constants are

o_(3) and o_4).

Axisymmetric motion.- Among the four associated indicial constants, o_5) and o_6)

are zero. Therefore, the original solutions, given in equations (BI) and (B2), correspond-

ing to these two indicial constants, become identical. For _(5) the original solution

(eqs. (BI) and (B2)) is retained, and a special solution corresponding to o_6) is found.

This solution is obtained by differentiating the original solution with respect to _ and

then substituting k = 6 and a(k) --0. The solution is the same as given in equa-

tions (B3) and (B4), now with k = 6.

Torsional motion.- The two indicial constants corresponding to torsional motion are

_(3) and o_4), which are equal to +1 and -i. Since the indicial constants differ by an
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APPENDIX B - Continued

integer, it would be impossible to obtain the solution corresponding to the indicial constant
of -i by use of equations (BI) and (B2). Therefore a special solution corresponding toof trying to obtain a special solution starting from
root 0_4) must be obtained. Instead much easier to return to the appropriate differential

the general solution, in this case it is

equation and solve itdirectly. The differential equation for torsional vibration is (from

eq. 451))

I d nO = 0 (85)

55_ c55+(p_2a2_c66t_2)+c55_ d_dR 2 R 2

Rearranging gives

d_2 dR

(B6)

where

_t = _---R

0)=

V= I, -i
(0)2 > 0, 0)2 < 0)

(B7)

and

P fZ2a2 C 66 N 20)2 = - ___-

C55 C55

Equation (B6) is a Bessel equation when 002 > 0

0)2 < 0. The two solutions of equation (B6) are

(BS)

and a modified Bessel equation when

)/0(3) and ×0(4), givenby

(o)2 > 0) (B9)

(o)2 < O)
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where

KI

APPENDIX B - Continued

XO(4)

;YI(I_) (0) 2 > 0)

CK 1 (R) (0) 2 < 0)

J1 and Y1 are Bessel functions of first and second kind of order 1
are modified Bessel functions of first and second kind of order 1.

Among the other X functions, Xr, Xz, Xrr, XO0, Xzz, and Xrz

Xr0(3) = C _ i[dJl(l_)
55

FdY1( )
XrO(4) = C55_ _-_

X0z(3) = C66NJl(l_)

X0z(4) = C66NY1(1%)

(BIO)

, and I 1 and

are zero, and

(Bll)

When c02< 0 in equations (Bll), J is replaced by I and Y by K.

Special Case: m ¢C66/C44 = Integer

When miC66/C44 is an integer, the indicialconstants a(5) and a(6) differ by an

even integer. In this case it would be impossible to calculate the solution corresponding

to o_6) by using equations (B1) and (B2). The special solution is obtained by multiplying

the original solution (eqs. (B1) and (B2)) by a - o_6), differentiating with respect to a,

and then substituting a = a(6). Now,

/3-1

{×r(6); )/0(6);×z(6)} = _ R a(6)+j {dr(J,6); d0(j,6); dz(j,6)}

j=0

+

CO

R 6)+j {Jar(j, 6)logeR + dr(j, 6)];

^t • ^T ]}[d0(j , 6) logeR + do(] , 6)]; [dz(J, 6) loge R + dz(j, 6) (B12)
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APPENDIX B - Concluded

where /_ = ×(5) - X(6) = 2m_C66/C44. Xrr(6), Xr0(6), " •

Xrr( 6)= _ R 0_6)+j-1 [_ldr(J,6)

j=0

+ _2d0(J, 6) + _3dz(j, 6)]

• can be written in the form

oo

j=_

+ _sa0(j,6)+ _6az(j,6)

d' " 6)]+ _1 _ar(j, 6) logeR + r(],

^,. a'-)]}
+ _2 _a0(j'6) loge R +d0(],6)_ + _h3[az(j,6) logeR+ z(],6

In equations (B12) and (B13),

dr(J, 6) = lim {[a - o_6)] dr(J, 6)}
_-_(6)

(B13)

{[ol- _6)] dr(J 6)} at ol= o_6)a_(j,6)= _

and dr, dr, • • are given in table VIII.

Special Case: Isotropic Material

When the material is isotropic, all the indicial constants o_1), o_2), . .., o_6) are

integers. Special solutions can be obtained starting from the general solution given by

equations (B1) and (B2). But, as mentioned in the Introduction, for the isotropic case the

solution for the governing differential equations (eqs. (46) to (48)) can be obtained very

easily by following the displacement potential technique (see refs. 5 and 9).
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he
Frr(J ,3, 1), Fr0(J , 3,1), . . .

TABLE I.- EQUATIONS FOR F

can be expressed in the form Frr(j,3,1) = _ _Kr(i) Ur(i) + K0(i) U0(i) + Kz(i) Uz(i)]" /

i=0 J

Frr(j,3,1)

Fr0(J ,3,1)

Frz(j,3,1)

Fr0(J,I,51)

F08(j,l,51)

F0z(J,I,51)

Frz(J,2,51 )

F0z(J,2,51)

Fzz(J ,2,51)

For(J,2,51)

fp0(J,2,51)

Fpz(j,2,51)

Note: 54 = 1+ 5(j,i);

The stiffnesses

that is,

where

Kr(i ) Ko(i)

5(j,i) Dll(j,7,1) + D12(j,5,54)

a 8
D55 (j,5,54) _ + D45(J,4,54) _-_

0__+ a
D45(J'5'64) 00 D44(J'4'54) -_

8 D45(J,1,55 ) 8
D55(j,3,55) _-_ + _-_

5(j,i) Dt2(j,5,61) + D22(j,3,55)

D 3
D12(J,S,54) _ + 016(J,4,64) _-_

5(j,i) D55(J,7,1) - D55(j,5,54)

5(j,i) D45(J,7,1) - D45(J,5,54)

5(j,i) D55(j,5,51) - D55(j,3,55)

___+ 3
922(j'3'55) 30 D26(j'1'65) -_-

Kz(i)

3 8
D16(j,5,64) -_ + D13(J ,4,54) -_

6(j ,i) D45(J ,7,1)

6(j,i) D44(j,7,1)

5(j,i) D45(j,5,51)

8 8
D26(j,3,65) _-_ + D23(j,1,55) -_

5(j,i) D16(j,5,51) + D26(J,3,55)

o 3
D45(J,1,55) -_ + 044(j,2,65) -_

5(j,i) D16(j,4,51) + D26(j,1,55)

5(j,i) D13(j,4,51) + D23(j,1,55)

32

Dp(j,2,55) _t 2

0

55 = 51 + 5(j,i)

3 3
D26(J,3,55) -_ + D66(j,1,55) _-_

5(j,i) D45(j,4,51) - D45(j,1,65)

3 3

D26(j,1,65) _ + D66(j,2,55) _-_

3 3

D23(j,1,55 ) _ + 936(j,2,55) -_

0

O2

DO (j'2'55)

0

___+ 3
D66(J'3'55) 30 D36(j'1'55) O-Z

6(j,i) D44(J ,4,61)

3 3
D66(J,1,55) -_ + D36(J,2,55) _-_

3 3
D36(j,1,65) -_ + D33(j,2,55) _-_

0

0

oA
Dp(j,2,55) 3t 2

D are pure functions of the material properties and the inner and outer radii of the individual plies;

• _-1

{D )_ = _a(j+l) ( 1 R . 1 . 1 ; (_._)C_(j)_R_ dR_(j,l,£), . .., D;3(j,7,£ "Ja(j) 1; R; g; h--_' h(j)' Rl_(j) h

= 11, 12, . .., 66, p. When _ =p,

DJ3(j'l'_) = __j) h(j)

D/3(j,2,_) = C_(j) h(J)_+_-_

D_(j,3,1) = C/3(j)loge_I + _

C;3 = p. If the material properties are constant across a ply,

D/_(j,3,2) = C_(j)(1- _ loge_ + h(j)_ _ D_(j,I,_)a---_JJ D_(j ,5,_) - h(j)

(1 _ a(j) + a(j) 2 1 fl + _ D;3(j,6,_) = -D-_(J'3'_)D/3(J,3,3) C_(j) h-_ _ °ge_ a_jjjfl h(j)

pA(J,2, )
D/3(j'4'_) = ___,2,_) Dj3(j,q,_) = h(J) 2

h(j)
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TABLE II.- COEFFICIENTS V

IV(/3,k,i) = j__ l

_(j,i) _(_);

= 1 for k=0, k= k for k> 0;

[kLx(j,i) =0 for i>j, h(j,i) =1 for i-<j

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Notes: 61 1 + 6(j,k),

given in table I.

Dp(j,2,65) a 2

D55(j,3,65)

D44(j,2,55)

2D45(j,l,65)

-6(j,k) 5(j,i)Dll(],7,1) - 5(j,k)D12(J,5,54) - 5(j,i)D12(j,5,51) -D22(],3,55)

-5(j,k) D12(J,5,64) - D22(j,3,65) - D55(j,3,55) + 5(j,i)D55(j,5,51)

-6(j,k) D16(j,4,64) - D45(j,l,65) + 6(j,i)D45(j,4,61) - D26(j,l,55)

-5(j,k) D16(j,5,54) + 5(j,i) D45(J,5,51) - D26(J,3,55)

-6(j,k) D13(J,4,54) - D23(j,l,55) + 5(j,i) D44(j,4,61)

-6(j,k) D55(J,5,54) + D55(j,3,55) + 5(j,i)D12(j,5,61) + D22(],3,55)

D45(j,l,55) + 5(j,i) D16(J,4,61) - 5(],k) D45(j,4,54) + D26(j,l,55)

D22(j,3,65)

D66(],2,55)

2D26(j,l,65)

5(j,k) D55(j,5,64) - 6(j,k) 5Cj,i) D55(j,7,1) - D55(j,3,55) + 6(j,i) D55(j,5,51)

D26(j,3,55)

D36(J,2,65)

D23(J,l,65) + D66(j,1,55)

-6(j,k) 5(j,i)D45G,7,1) + 5(j,i) D45(j,5,61)

D26(j,3,55) - 5(j,k)D45(j,5,54) + 6(j,i) D16(J,5,51)

6(j,i) D13(j,4,61) - 6(j,k) D44(j,4,64) + D2a(J,I,5 5)

-5(j,k) 6(j,i) D45(J,7,1) + 6(j,k)D45(J,5,54)

D66(J,3,65)

D33(j,2,65)

2936(J,1,55)

- 6(j,k) 5(j ,i) D44(J, 7,1)

55 = 1 + 6(j,i) + 5(j,k), 54 = 1 + 6(j,i), and the stiffnesses D are



TABLE III.- MATRICES

Matrices M(/3) and J(_)

n the form

M(_) AND J(_)

can be written in terms of nine submatrices, 1

4(_) _ 5C/3) _ 6(/3)1

7(_) _8(_) _9(_)_

M(_)=

are given below in which

General terms of matrices _I(_), " " "' _9(/3)

k refers to row and i to column.

.________----------

i(_)

_2(_)

3(_)

5(_)

6(_)

_8(_)

Note: 52(I) = 52(2) = I,

The coefficients

V(l,k,i) _22 - V(2,k,i) m 2 - V(3,k,i) N 2 + V(5,k,i)

V(6,k,i) m52(_)

-V(9,k,i) N53(/3)

-V(10,k,i) m52(13)

V(1,k,i) _22 - V(12,k,i) m 2 - V(13,k,i) N 2 + V(15,k,i)

V(18,k,i)mN52(_)53(_)

V(21,k,i)N53(_)

V(18,k,i) mN52(_) 53(/3)

V(1,k,i) _22 - V(23,k,i) m 2 - V(24,k,i) N 2 + V(26,k,i)

52(3 ) = 52(4 ) : -i, 53(I) : 53(3) = I,

V are given in table II.

J(_)

-V(4,k,i)mN52(/3)53(/3)

v(7,k,i)N53(_)

-V(8,k,i) m52(_)

V(ll,k,i) N53(_)

V(14,k,i) mN52(/3) 63(/3)

-V(16,k,i) m 2 - V(17,k,i)N2 + V(19,k,i)

-V(20,k,i) m52(/3)

-V(16,k,i) m 2 - V(17,k,i) N 2 + V(22,k,i)

V(25,k,i) mN52(_) 53(/3)

53(2 ) = 53(4 ) = -I.
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TABLE IV.- MATRICES _8(_3), _e(8), . • • OCCURRING IN EQUATIONS (32) AND (33)

Matrices _e(Z),He(8), • . • can be written in terms of nine submatrices, each

of order p + i, in the form

@e(_) = IQ4(B) _5 (8)
I

LQT(z) Qs(_)

General terms of matrices Ql(8) ,Q2(z), • • .

row and i to column.

_9(z)j

are given in which k refers to

91(z) 92(z) 93(8) 94(8) 95(z) 96(z) QT(Z) _°s(z) 99(_)

_e(Z ) V(2,k,i)

he(_) o

re(p) o

20(8 ) V(4,k,i) N66(19 )

_e(fl) V(l,k,i)_22 - V(3,k,i)N 2

+ V(5,k,i)

_e(_ ) 0

_z(8 ) V(3,k,i)

nz(_) o

rz(_) o

Tz(Z) V(4,k,i) m66(8)

_z(8 ) V(1,k,i) _2 _ V(2,k,i) m 2

+ V(5,k,i)

Zz(_)o

0

0

V(6,k,i)

0

0

V(7,k,i) N66(_)

0

0

0

V(7,k,i)

-V(6,k,i) m56(_)

0

0

0

V(8,k,i)

- V(9,k,i) N56(13 )

0

0

V(10,k,i)

0

0

V(12,k,i)

0

0

V(14,k,i) N56(8)

V(1,k,i) _22 - V(13,k,i) N 2

0

V(16,k,i)

-V(18,k,i) N56(/3 )

0

0

0

0

0

V(20,k,i)

V(21,k,i) N56(fl)

0

V(16,k,i)

V(18,k,i) N56(_)

0

0

0

0

0

V(9,k,i)

0

0

V(8,k,i)m66(_)

V(11,k,i) Nb6(Z)

0

0

0

V(ll,k,i)

+ V(15,k,i)

0

V(13,k,i)

0

0

-V(14,k,i) m56(_)

V(10,k,i) m66(_) V(1,k,i) _2 _ V(12,k,i) m 2

+ V(15,k,i)

-V(17,k,i)N 2 + V(19,k,i)

0

V(lT,k,i)

V(1B,k,i) m56(_)

0

0

-V(16,k,i) m 2 + V(19,k,i)

0

0

0

V(21,k,i)

40

0

V(20,k,i) m56(Z)

-V(17,k,i) N2 + V(22,k,i)

0

V(17,k,i)

-V(18,k,i) m56(8)

0

0

-V(16,k,i) m 2 + V(22,k,i)

V(23,k,i)

0

0

-V(25,k,i) N56(8)

V(1,k,i) _2 _ V(24,k,i) N 2

+ V(26,k,i)

0

V(24,k,i)

0

0

V(25,k,i) m56(_)

V(1,k,i) _22 - V(23,k,i) m 2

+ V(26,k,i)

0

Notes: 56(1)=1; 66(2 ) =-1.

The coefficients V are given in table II.



TABLE V.- EQUATIONS FOR f

,fa0(2) ' . . . can be expressed in the form

O2 0 2 °o--_--_ 1f00(I) = r(1) - .r(2)_ - .r(3)-_ - Ur(4) Ur0

+ 0(1) -_ + ue(2) Ue0 + z(1)'_ + ,z(2) Uz0

fee(i)

fee(2)

fee(3)

fzz(1)

fzz(2)

fez(1)

fez(2)

l fez(3)

B22(5,1)

B22(2,2)

B22(3,1)

B23(6, I)

B23(6, 2)

B26(8,1)

B26(3,1)

B26(13,2)

-r (2)

B22(4,2)

B22(1,3)

B22(2,2)

B23(5, 2)

B23(5, 3)

B26(7,2)

B26(2,2)

B26(18,3)

_r(3)

B23(8, 2)

B23(5, 3)

B23(6, 2)

B33(9, 2)

B33(9, 3)

B36(15'2) 1

B36(6, 2)

B36(16,3___ )

-r(4)

B26(17,2)

B26(18,3)

B26(13,2)

B36(16,2)

B36(16,3)

B66(14,2)

B66(13,2)

B66(12,3)

.o(1)

B22(7,1)

B22(4, 2)

B22(5,1)

B23(8, l)

B23(8, 2)

B26(10,1)

B26(5,1)

B26(17,2)

.e(2)

B26(10,1)

B26(7,2)

B26(8,1)

B36(15,1)

B36(15, 2)

B66(11,1)

B66(8, i)

B66(14,2)

-z(i)

B26(5,1)

B26(2,2)

B26(3,1)

B36(6,1)

B36(6,2)

B66(8,1)

B66(3,1)

-z(2)

B23(8,1)

B23(5, 2)

B23(6,1)

B33(9,1)

B33(9,2)

B36(15,1)

B36(6,1)

B36(16,2)

The

plies.

a2

fpr(1) = Bp(9,1)_Ur0

a3 a2

fpr(2) = -Bp(7,3) _ Ur0 + Bp(10,2) a-_ UO0

02

fpr(3) = -Bp(9,3) "03 Ur0 + Bp(9,2)__t2Uz0
at _ OZ

_3 _2

fpe(1) = -Bp(10,2) _ Ur0 + Bp(ll,1) -a-_Ue0

fpz(1) = -Bn(9,2) 03 Ur0 + Bp(9,1) a-_2at_' _Z 0t2 Uz0

B terms are pure functions of the mate;ial properties and the inner and outer radii of the individual

I,I_); B/3(2,¢); • • .; B/3(18,_)_

P _a(j+l)(Ra----_; 1 . 1. 1 ; 1 . R ; R . R 2 . R3
j=l

JR+ a(1)_ 2 I-R+ a(l_. RVR+a(1)_ R 2 [R+a(l_)] [R+a(I_.[R+ a(1)_._

Ra(1)2 ; Ra(1)' a(1)2 ;a(1----); a(1) ; a(1) 2 ' Ra(1)2J

%(j) _R - a(1)__-IdR

/3 = 22, . . .,66, p; when /3 =p, c/3 =p.
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TABLE VI.- FREQUENCY PARAMETER _, FOR THREE-PLY CYLINDERS

Ii ll(i): C12(i): C13(i): C22(i): C23(i): C33(i): C44 (i): C55(i): C66(i)
0.08: 0,05: 0.07: 0.19: 0.32: 1: 0.04: 0.03:0.34

33(1)/C33(2 ) = C33(3)/C33(2) = 20

(a) Thin cylinder; total thickness, 5 percent of outer radius; a(1) = 0.95; a(2) = 0.955; and a(3) = 0.995

First frequency Second frequency Third frequency

Thin Refined Thin Refined
m Thin Refined Exact Exact

Exact shell laminate shell iaminate shell laminate

0 0.32461 0.34393 0.32475 1.8186 1.8323 1.8321 3.0037 3.0582 3.0531

1 .33631 .36091 .33646 1.7031 1.7141 1.7139 3.1438 3.2082 3.2024

2 .36737 .40749 .36753 1.4689 1.4757 1.4756 3.4615 3.5521 3.5440

3 .40447 .47064 .40467 1.2612 1.2657 1.2654 3.8451 3.9760 3.9636

4 .42507 .52990 .42533 1.1822 1.1875 1.1857 4.2502 4.4368 4.4173

0 .28282 .28342 .28286 .91444 .91614 .91612 1.5441 1.5508 1.5503

1 .30591 .30722 .30596 .73851 .73938 .73936 1.7807 1.7917 1.7909

2 .30838 .31225 .30846 .60334 .60419 .60379 2.2071 2.2292 2.2275

3 .21959 .23314 .21974 .79860 .80118 .79965 2.6748 2.7153 2.7122

4 .20414 .24179 .20444 1.1413 1.1467 1.1445 3.1559 3.2241 3.2187

0 .20999 .20995 .21000 .22901 .22904 .22904 .51742 .51743 .51757

1 .07054 .07054 .07054 .41947 .41954 .41957 .84022 .84128 .84126

2 .03594 .03679 .03602 .78831 .78949 .78928 1.3512 1.3559 1.3556

3 .06940 .07419 .06966 1.1918 1.1964 1.1956 1.8985 1.9113 1.9107

4 .12237 .13560 .12283 1.5963 1.6080 1.6058 2.4564 2.4841 2.4828

0 0 0 0 0 0 0 ,40893 .40875 .40897

1 0 0 0 .57734 .57756 .57764 .59782 ,59819 .59818

2 .02316 .02375 .02328 .91106 .91294 .91266 1.1935 1.1964 1.1963

3 .06372 .06712 .06401 1.2851 1.2910 1.2900 1.7847 1.7946 1.7943

4 .11781 .12857 .11829 1.6695 1.6833 1.6808 .2.3694 2.3927 2.3921

(b) Thick cylinder; total thickness, 20 percent of outer radius; a(1) = 0.8; a(2) = 0.82; a(3) = 0.98

Exact

0.40438

.42140

.46495

.50904

.52631

.31807

.35573

.33947

.28099

.33070

.21844

.06638

.08773

.18459

.28616

0

0

.08004

.18123

.28393

First frequency Second frequency Third frequency

Refined Thin Refined laminate Thin Refined laminate
Thin laminate; Exact shell Exact shell
shell Pm = 1 Pm = 1 Pm = 2 Pm= 1 Pm = 2

0.81033 0.40466 1.6205 1.8399 1.8312 1.6637 1.7475 3.0636 1.8508 1.7901

.90411 .42173 1.5294 1.7059 1.6938 1.5648 1.7530 3.2348 1.8543 1.7947

1.1402 .46544 1.3354 1.4500 1.4331 1.3580 1.7633 3.6180 1.8620 1.802,7

1.2187 .50984 1.1742 1.4813 1.2375 1.1894 1.7626 4.0843 1.8508 1.8022

1.1676 .52774 1.1540 1.8484 1.2171 1.1695 1.7309 4.5893 1.7982 1.7670

.34461 .31837 .89129 .91996 .91833 .89790 1.4316 1.5573 1.5388 1.4580

.41939 .35608 .71061 .72587 .72295 .71368 1.4242 1.8267 1.4445 1.4441

.46341 .33990 .62782 .68829 .63563 .62979 1.3608 2.3061 1.3801 1.3789

.57619 .28145 .85051 .98070 .87356 .85655 1.5134 2.8370 1.5451 1_5381

.87921 .33178 1.1398 1.3556 1.2125 1.1597 1.7260 3.3934 1.7896 1.7581

.21804 :21861 .22955 .22999 .22996 .22965 .54260 .54266 .54543 .54332

.06642 .06639 .46207 .46637 .46439 .46267 .86049 .88568 .88059 .86560

.13212 .087_7 .82383 .86418 .84514 .82944 1.3288 1.4482 1.4065 1.3499

.33591 .18496 1.1547 1,2943 1.2350 1.1765 1.6937 2.0573 1.7601 1.7266

.61270 .28705 1.3692 1.7296 1.5441 1.4177 1.9282 2.6843 1.9793 1.9503

0 0 0 0 0 0 .44779 .44467 .44865 .44802

0 0 .60992 .61894 .61637 .61160 .64047 .65076 .64808 .64238

.11167 .08019 .91939 .97362 .95316 .92872 1.2280 1.3015 1.2853 1.2418

.31182 .18159 1.2068 1.3758 1.3065 1.2338 1.7339 1.9523 1.8120 1.7733

.58693 .28481 1.3884 1.7937 1.5749 1.4405 1.9938 2.6030 2.0327 2.0090
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TABLE VII.- ACCURACY OF FREQUENCIES OBTAINED

BY USING THIN-SHELL THEORY

Thickness
of laminate Radius

Thin Thick Long

X X X

X X X

X

X X

X X

X X

Notes:

1. Long: b/a> 8

Moderate: 2 < b/a < 8

Short: l_/a < 2

Nodal distance

Moderate

a

Short

X

X

Circumferential
wave number,

m

-<2

>2

All

=<i

>i

All

Ac cur ac y

Reasonably
accurate

X

X

Inaccurate

X

X

X

Highly
inaccurate

X

2. Reasonably accurate: error less than 5 percent

Inaccurate: error 5 percent to 25 percent

Highly inaccurate: error greater than 25 percent

3. Thickness up to 5 percent of radius

73



TABLE VIII.- RELATIONSHIPS FOR dr, do, AND d z AND FOR e0, el, . . .

(a) Relations for dr, do, and d z

dr(j,k)

d0(j,k)

dz( j ,k)

T .

dr( j ,k)

d_(j,k)

dz(j,k)

dr(j,k)

a0(j,k)

az(j,k)

^T .

dr( ] ,k)

a_(j,k)

_l_(j ,k)

j = 0 for --

k = 1,2,3,4 k = 5,6

1 0

e 0 0

0 1

0 0

' 0
e 0

0 0

j > 0 for -

j is even and k= 1,2,3,4 or j is odd and k= 5,6

e2e6- e4e5)/e7

(e3e 5 - ele6)/e7

0

_e_e6+e2e_-e_e5-e4e_)e7-(e2e6-e4e5)e7_/e72

ICe ' ' (e ) _/ 23e5' + e 3e'5 - ele6 - ele6)e 7 - 3e5 - ele 6 e e 7

j is even and k= 5,6 or
j is odd and k = 1,2,3,4

0

0

e8/e9

0

0

0

e266 - e465)/e7

e365 - e166)/e 7

0

_ - - e' 6 e - - )e e72(e2e6 +e2e6 e4e5 4 5) 7 (e2e6 e4e5

I(e3e5 + e3_ 5 -ele _ - e_6)e 7 -(e3_ 5 - ele6)eT_/e72

0

(e8e 9 - ese9)/e92

0

0

_8/69

0

0

(_9-68_)/_92
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TABLE VIII.- RELATIONSHIPS FOR dr, d0, AND d z AND FOR e0 ' el , . . . - Continued

(b) Relations for e0, e I , • • .

e 0

e 1

e2

e3

e 4

e5

e6

e7

Note:

Relation

CllC_(k) 2 - C55m2 - C22

m(C55 + C22 ) - m(C55 + C12) _(k)

CliE_(k) + _2 - C5_m2 _ C22

m QC55 + CI2)E_(k) + J]- C55- C22)

mI-(C55 + CI2)E_(k) + JJ- C55- C22_

C55_(k) + jJ2 - C22m2 _ C55

(p_22a 2- C44N2)dr(j-2, k) + Ndz(j-l,k)_(C13 + C44)[-e_(k)+J - 1_-C13+ C23_

(p_22a 2 - C66N2)do(j-2, k) + mNdz(j-1, k)(C23 + C66)

ele 4 - e2e 3

QC44+C13) E_(k) +j - I] +C44+C23_Ndr(j-l,k) +(C66+C23)mNde(j-l'k) +(P_22a2- C33N2)dz(j-2'k)

C66m2 - C44Ec_ (k) + j_2

d (-1,k), d0(-1,k), and dz(-1,k), when they occur, are zero.

(c) Relations for e_, e_, . • •

Relation

v

e 9

C55 + C12

C55 + C22

2C11[_(k) + jJ

m(C55 + C12)

-m(C55 + C12)

2C55E_(k) + J]

(p_2a2 - C44N2)d_(j_2, k) _ N(C13+ C44)dz(j_l,k) + Nd_z(j_l,k)_(C13+ C44)Eo/(k) +j - 1_ - C13+ C23 _

(pg_2a2 _ C66N2)d_(j_2, k) + (C23 + C66)mNdz(j-1, k)

, , T

ele 4 + ele 4 - e2e 3 - e2e _

(p_2a2 - C33N2)dz(j_2,k ) + (C44 + C13)Ndr(J_1,k) + C44 + C13)E_(k) + j - 1] + C44 + C2 Ndr(J-l,k) + (C66 + C23)mNd0(]-l' )

-2C44E_(k) + J]

t

Note: dr(-1,k), d0(-1,k), and dz(-1,k), when they occur, are zero.
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TABLE VIII.- RELATIONSHIPS FOR dr, do, AND d z AND FOR e0, el, . . . - Concluded

(d) Values for 65,6_, • • •

68

69

65

_6

_8

_9

65

66

6_

6_

j =/_ (j iseven) j =t3+1 (j isodd) j_->fl+2

e 8

c44_-(6)--J at _ =.(6);
thus, 69 = 2C44c_(6)

el

-C44

Ndz(13,6)(-(Cl3 + C44)[-_(6)+j- 1]-C13+ C23)

mNdz(_,6) (C23 + C66)

(p_2a2 - C44N2)dr(fl-1, 6) - NClz(13,6) (C13 + C44)"

+ N_z(/_,6) {-(C13 + C44)_(6) + j - I_-CI3+ C23 }

(p_22a 2 - C66N2)d0(fl-l,6 ) + mN_(/_,6)(C23 + C66 )

(p_2a2- C33N2)_iz(j-2 ,6) + _C44 + C13)F_(6) + j - 1U

C23_N_lr(j-1 , 6) + (C66 + C23)mNc10(j-1, 6)
+ C44 -p

e 9

(p_2a2 -C44N2)dr(j_ -2,6)+ N_(C13 + C44 )F__(6)+ j- 1_]

- C13 + C23)az(j-1, 6)

(p_2a2 - C66N2)c10(j-2, 6) + mN(C23 + C66)_Iz(j-1, 6)

(pg_2a2 - C33N2)Clz(j-2 , 6) + (C44 + C13)Ndr(j-1, 6)

+ QC44+ C13)C_(6) +j - 1_+C44+ C23 _Ndr(j-1,6)

+ (C66 + C23)mNd_(j-1 , 6)

e_ = -2C44_(6 ) + j]

(p_22a2_ - C44N2)dr(j-2, 6) - (C13 + C44)Ndz(j-1,_ 6)

+N_-(C13+ C44)Ea(6)+j- 1_- C13+ C23)
6)

(p_22a 2 - C66N2 ) d_(j-2, 6) + raN(C23 + C66)dz(j-1, 6)

7 6 NASA-Langley, 1974 L- 8828


